CAD/CAM LAB

Objective: To impart knowledge on usage of various drafting, Modeling, analytical tools like auto cad, pro/e, Ansys for engineering simulations in industry's by solving some real time problems

Sections Handled: I YEAR II SEM A, B

Major Equipment Details:

S. No	Name of the Equipment	Quantity
1	Intel i5 7 generation core processor, 1 TB Hard disk, 8GB RAM, 2 GB NVIDIA graphics card, 64 bit Windows operating system	36
2	10 KVA 'V Guard' Online UPS System with 30 Minutes battery backup	1
3	AUTODESK Inventor software	unlimited
4	Ansys academic teaching mechanical &CFD version 2,56,00 nodes version 18.0 with perpetual license	50users
5	CREO 4.0 University plus lab pack with perpetual license	50users
6	MTAB model XLTURN CNC slant bed lathe with 8 station indexing tool post and fanuc emulated control	1

Faculty In charge with qualification: Mr. D. BalaNagesh-M.Tech

Lab Technical name with qualification: K. Suresh, D.M,E

Experiment list as per curriculum:

- 1. a).2D truss using Ansys. Take E=2E5, poisons ratio = 0.3
 - b) Analysis of continuous beam with overhang using Ansys.
- 2. a) 2D Structural analysis using Ansys.
 - b) Determination of principle and Vonmises stress in axis symmetric components
- 3. 3D Structural analysis using Ansys.
- 4. Estimation of natural and mode shapes Harmonic response of beams
- 5. Steady state heat analysis of a plane axis symmetric components.
- 6. Buckling analysis using Ansys
- 7. Plain turning and Facing using CNC part programming
- 8. Step turning using CNC part programming
- 9. taper turning using CNC part programming
- 10. Study and demonstration of RP machine and creation of simple parts
- 11. Study of various post processor statements
- 12. Virtual 3D printing simulation lab using V labs