DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – I Semester | | L | T | P | C | |----------------------|-----------------------------------|---|---|---|---| | 1 Tear 1 Semester | | 3 | 0 | 0 | 3 | | (| CRYPTOGRAPHY AND NETWORK SECURITY | • | | | | # **Course Objectives:** This course aims at training students to master the: - The concepts of classical encryption techniques and concepts of finite fields and number theory - Working principles and utilities of various cryptographic algorithms including secret key cryptography, hashes and message digests, and public key algorithms - Design issues and working principles of various authentication protocols, PKI standards - Various secure communication standards including Kerberos, IPsec, and SSL/TLS and email - Concepts of cryptographic utilities and authentication mechanisms to design secure applications # **Course Outcomes:** By the end of the course the student - Identify information security goals, classical encryption techniques and acquire fundamental knowledge on the concepts of finite fields and number theory - Compare and apply different encryption and decryption techniques to solve problems related to confidentiality and authentication - Apply the knowledge of cryptographic checksums and evaluate the performance of different message digest algorithms for verifying the integrity of varying message sizes - Apply different digital signature algorithms to achieve authentication and create secure applications - Apply network security basics, analyze different attacks on networks and evaluate the performance of firewalls and security protocols like SSL, IPSec, and PGP - Apply the knowledge of cryptographic utilities and authentication mechanisms to design secure applications # **UNIT I** Classical Encryption Techniques: Security Attacks, Services & Mechanisms, Symmetric Cipher Model. Cyber Threats, Phishing Attack, Web Based Attacks, SQL Injection Attacks, Buffer Overflow& Format String Vulnerabilities, TCP session hijacking, UDP Session Hijacking. Block Ciphers: Traditional Block Cipher Structure, Block Cipher Design Principles. #### UNIT II Symmetric Key Cryptography: Data Encryption Standard (DES), Advanced Encryption Standard (AES), Blowfish, IDEA, Block Cipher Modes of Operations. Number Theory: Prime and Relatively Prime Numbers, Modular Arithmetic, Fermat's and Euler's Theorems, The Chinese Remainder Theorem, Discrete Logarithms. # DEPARTMENT OF INFORMATION TECHNOLOGY # **UNIT III** Public Key Cryptography: Principles, Public Key Cryptography Algorithms, RSA Algorithm, Diffie Hellman Key Exchange, Elliptic Curve Cryptography. Cryptographic Hash Functions: Application of Cryptographic Hash Functions, Requirements & Security, Secure Hash Algorithm, Message Authentication Functions, Requirements & Security, HMAC & CMAC. Digital Signatures: NIST Digital Signature Algorithm, Key Management and Distribution. # **UNIT IV** User Authentication: Remote User Authentication Principles, Kerberos. Electronic Mail Security: Pretty Good Privacy (PGP) And S/MIME. IP Security: IP Security Overview, IP Security Architecture, Authentication Header, Encapsulating Security Payload, Combining Security Associations and Key Management. # **UNIT V** Transport Level Security: Web Security Requirements, Secure Socket Layer (SSL) and Transport Layer Security(TLS), Secure Shell(SSH). Firewalls: Characteristics, Types of Firewalls, Placement of Firewalls, Firewall Configuration, Trusted Systems. # **Text Books:** - 1) Cryptography and Network Security- William Stallings, Pearson Education, 7th Edition. - 2) Cryptography, Network Security and Cyber Laws Bernard Menezes, Cengage Learning, 2010 edition. #### **Reference Books:** - 1) Cryptography and Network Security- Behrouz A Forouzan, Debdeep Mukhopadhyay, Mc-GrawHill, 3rd Edition, 2015. - 2) Network Security Illustrated, Jason Albanese and Wes Sonnenreich, MGH Publishers, 2003. #### e-Resources: - 1) https://nptel.ac.in/courses/106/105/106105031/ lecture by Dr. Debdeep MukhopadhyayIIT Kharagpur [Video Lecture] - 2) https://nptel.ac.in/courses/106/105/106105162/ lecture by Dr. Sourav Mukhopadhyay IIT Kharagpur [Video Lecture] - 3) https://www.mitel.com/articles/web-communication-cryptography-and-network-security web articles by Mitel Power Connections # DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – I Semester | | L | T | P | C | | |----------------------|--|---|---|---|---|--| | 1, 1 car 1 semester | | 3 | 1 | 0 | 4 | | | MACHINE LEARNING | | | | | | | # **Course Objectives:** The course is introduced for students to - Gain knowledge about basic concepts of Machine Learning - Study about different learning algorithms - Learn about of evaluation of learning algorithms - Learn about artificial neural networks # **Course Outcomes:** - Identify machine learning techniques suitable for a given problem - Solve the problems using various machine learning techniques - Apply Dimensionality reduction techniques - Design application using machine learning techniques #### **UNIT I** Introduction: Definition of learning systems, Goals and applications of machine learning, Aspects of developing a learning system: training data, concept representation, function approximation. Inductive Classification: The concept learning task, Concept learning as search through a hypothesis space, General-to-specific ordering of hypotheses, Finding maximally specific hypotheses, Version spaces and the candidate elimination algorithm, Learning conjunctive concepts, The importance of inductive bias. #### **UNIT II** Decision Tree Learning: Representing concepts as decision trees, Recursive induction of decision trees, Picking the best splitting attribute: entropy and information gain, Searching for simple trees and computational complexity, Occam's razor, Overfitting, noisy data, and pruning. Experimental Evaluation of Learning Algorithms: Measuring the accuracy of learned hypotheses. Comparing learning algorithms: cross-validation, learning curves, and statistical hypothesis testing. #### **UNIT III** Computational Learning Theory: Models of learnability: learning in the limit; probably approximately correct (PAC) learning. Sample complexity for infinite hypothesis spaces, Vapnik-Chervonenkis dimension. Rule Learning: Propositional and First-Order, Translating decision trees into rules, Heuristic rule induction using separate and conquer and information gain, First-order Horn-clause induction (Inductive Logic Programming) and Foil, Learning recursive rules, Inverse resolution, Golem, and Progol. # **UNIT IV** Artificial Neural Networks: Neurons and biological motivation, Linear threshold units. Perceptrons: representational limitation and gradient descent training, Multilayer networks and backpropagation, Hidden layers and constructing intermediate, distributed representations. Overfitting, learning network structure, recurrent networks. Support Vector Machines: Maximum margin linear separators. Quadractic programming solution to # DEPARTMENT OF INFORMATION TECHNOLOGY finding maximum margin separators. Kernels for learning non-linear functions. #### **UNIT V** Bayesian Learning: Probability theory and Bayes rule. Naive Bayes learning algorithm. Parameter smoothing. Generative vs. discriminative training. Logisitic regression. Bayes nets and Markov nets for representing dependencies. Instance-Based Learning: Constructing explicit generalizations versus comparing to past specific examples. k-Nearest-neighbor algorithm. Case-based learning. # **Text Books:** - 1) T.M. Mitchell, "Machine Learning", McGraw-Hill, 1997. - 2) Machine Learning, Saikat Dutt, Subramanian Chandramouli, Amit Kumar Das, Pearson, 2019. # **Reference Books:** - 1) Ethern Alpaydin, "Introduction to Machine Learning", MIT Press, 2004. - 2) Stephen Marsland, "Machine Learning -An Algorithmic Perspective", Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014. - 3) Andreas C. Müller and Sarah Guido "Introduction to Machine Learning with Python: A Guide for Data Scientists", Oreilly. #### e-Resources: - 1) Andrew Ng, "Machine Learning Yearning" https://www.deeplearning.ai/machine-learning-yearning/ - 2) Shai Shalev-Shwartz, Shai Ben-David, "Understanding Machine Learning: From Theory to Algorithms", Cambridge University Press https://www.cse.huji.ac.il/~shais/UnderstandingMachineLearning/index.html # DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – I Semester | | L | T | P | C | | | |----------------------|----------------------------|---|---|---|---|--|--| | 1 v 1 car 1 semester | | 3 | 0 | 0 | 3 | | | | | ADVANCED COMPUTER NETWORKS | | | | | | | # **Course Objectives:** This course is aimed at enabling the students to - Gain core knowledge of Network layer routing protocols and IP addressing. - Study Session layer design issues, Transport layer services, and protocols. - Acquire knowledge of Application layer and Presentation layer paradigms and protocols. - Provide the mathematical background of routing protocols. - To develop some familiarity with current research problems and research methods in advance computer networks. # **Course Outcomes:** After the completion of the course, student will be able to - Illustrate reference models with layers, protocols and interfaces - Describe the routing algorithms, Sub netting and Addressing of IP V4and IPV6 - Describe and Analysis of basic protocols of computer networks, and how they can be used to assist in network design and implementation - Describe the concepts Wireless LANS, WIMAX, IEEE 802.11, Cellular telephony and Satellite networks
UNIT I Network layer: Network Layer Services, Packet Switching, Performance, provided transport layers, implementation connectionless services, implementation connection oriented services, comparison of virtual –circuit and datagram subnets. IPV4 Address, Forwarding of IP Packets, Internet Protocol, ICMP v4. Mobile IP #### **UNIT II** Routing Algorithms—Distance Vector routing, Link State Routing, Path Vector Routing, Unicast Routing Protocol- Internet Structure, Routing Information Protocol, Open Source Path First, Border Gateway Protocol V4, Broadcast routing, Multicasting routing, Multicasting Basics, Intradomain Muticast Protocols, IGMP. # **UNIT III** IPv6 Addressing, IPv6 Protocol, Transition from IPv4 to IPv6. Transport Layer Services, connectionless versus connection oriented protocols. Transport Layer Protocols: Simple Protocol, Stop and Wait, Go-Back-N, Selective repeat, Piggy Backing. UDP: User datagram, Services, Applications. TCP: TCP services, TCP features, segement, A TCP connection, Flow control, error control, congestion control. # DEPARTMENT OF INFORMATION TECHNOLOGY # **UNIT IV** SCTP: SCTP services SCTP features, packet format, An SCTP association, flow control, error control. QUALITY OF SERVICE: flow characteristics, flow control to improve QOS: scheduling, traffic shaping, resource reservation, admission control. # **UNIT V** WWW and HTTP, FTP, Telnet, Domain name system, SNMP, Multimedia data, Multimedia in the Internet. #### **Text Books:** - 1) Data Communication and Networking, Behrouz A. Forouzan, McGraw Hill, 5th Edition, 2012 - 2) Computer Networks, Andrew S. Tanenbaum, David J. Wetherall, Pearson Education India; 5 edition, 2013. # **Reference Books:** - 1) Computer networks, Mayank Dave, CENGAGE. - 2) Computer Networks: A Systems Approach , LL Peterson, BS Davie, Morgan-Kauffman , 5th Edition, 2011. - 3) Computer Networking: A Top-Down Approach JF Kurose, KW Ross, Addison-Wesley, 5th Edition, 2009. #### e-Resources: 1) https://nptel.ac.in/courses/106/105/106105183/ # DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – I Semester | | L | T | P | C | | |----------------------|--|---|---|---|---|--| | | | 3 | 0 | 0 | 3 | | | Open Elective II | | | | | | | Note: The student has to take any one **open elective course** offered in the other departments (or) SWAYAM/NPTEL courses offered by other than parent department. (12 week minimum). Given below are some of the courses offered by NPTEL/SWAYAM | Electronic | cs & Communication Engineering | Mathe | matics | |-----------------------|--|----------------------------|---| | 2) VI
3) Si | nformation Coding Theory LSI Design ignals & Systems bigital Signal Processing | 1)
2) | Optimization Techniques Computational Number Theory and Cryptography | | | l and Electronics Engineering | Civil E | Engineering | | 2) Fu A 3) E S0 4) In | Networking Analysis Suzzy Sets, Logic and Systems & Applications Energy Management Systems and ECADA Industrial Safety Engineering | 1)
2)
3)
4)
5) | Intelligent transportation engineering Remote Sensing and GI Engineering Mechanics City and Metropolitan Planning Sustainable Materials and Green Buildings | | Mechanic | cal Engineering | | | | 2) Ro | ndustrial Automation and Control
obotics
AD | | | | | Mechatronics And Manufacturing Automation Ion Conventional Energy Resources | | | # DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – I Semester | | L | T | P | C | | |----------------------|--|---|---|---|---|--| | 1 v 1 cm 1 semester | | 3 | 0 | 0 | 3 | | | BIG DATA ANALYTICS | | | | | | | # **Course Objectives:** - To optimize business decisions and create competitive advantage with Big Data analytics - To learn to analyze the big data using intelligent techniques - To introduce programming tools PIG & HIVE in Hadoop echo system #### **Course Outcomes:** At the end of the course, the students will be able to - Illustrate big data challenges in different domains including social media, transportation, finance and medicine - Use various techniques for mining data stream - Design and develop Hadoop - Identify the characteristics of datasets and compare the trivial data and big data for various applications - Explore the various search methods and visualization techniques # **UNIT I** Introduction: Introduction to big data: Introduction to Big Data Platform, Challenges of Conventional Systems, Intelligent data analysis, Nature of Data, Analytic Processes and Tools, Analysis vs Reporting. #### **UNIT II** Stream Processing: Mining data streams: Introduction to Streams Concepts, Stream Data Model and Architecture, Stream Computing, Sampling Data in a Stream, Filtering Streams, Counting Distinct Elements in a Stream, Estimating Moments, Counting Oneness in a Window, Decaying Window, Real time Analytics Platform (RTAP) Applications, Case Studies - Real Time Sentiment Analysis - Stock Market Predictions. #### UNIT III Introduction to Hadoop: History of Hadoop, the Hadoop Distributed File System, Components of Hadoop Analysing the Data with Hadoop, Scaling Out, Hadoop Streaming, Design of HDFS, Java interfaces to HDFS Basics, Developing a Map Reduce Application, How Map Reduce Works, Anatomy of a Map Reduce Job run, Failures, Job Scheduling, Shuffle and Sort, Task execution, Map Reduce Types and Formats, Map Reduce Features Hadoop environment #### **UNIT IV** Frameworks and Applications: Frameworks: Applications on Big Data Using Pig and Hive, Data processing operators in Pig, Hive services, HiveQL, Querying Data in Hive, fundamentals of HBase and ZooKeeper. # DEPARTMENT OF INFORMATION TECHNOLOGY # **UNIT V** Predictive Analytics and Visualizations: Predictive Analytics, Simple linear regression, Multiple linear regression, Interpretation of regression coefficients, Visualizations, Visual data analysis techniques, interaction techniques, Systems and application # **Text Books**: - 1) Tom White, "Hadoop: The Definitive Guide", Third Edition, O'reilly Media, Fourth Edition, 2015 - 2) Chris Eaton, Dirk DeRoos, Tom Deutsch, George Lapis, Paul Zikopoulos, "Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data", McGrawHill Publishing, 2012. - 3) Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", CUP, 2012. # **Reference Books:** - 1) Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley& sons, 2012. - 2) Paul Zikopoulos, DirkdeRoos, Krishnan Parasuraman, Thomas Deutsch, James Giles, David Corrigan, "Harness the Power of Big Data: The IBM Big Data Platform", Tata McGraw Hill Publications, 2012. - 3) Arshdeep Bahga and Vijay Madisetti, "Big Data Science & Analytics: A Hands On Approach", VPT, 2016. - 4) Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and its Applications (WILEY Big Data Series)", John Wiley & Sons, 2014. # DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – I Semester | | L | T | P | C | | | |----------------------|--|---|---|---|---|--|--| | 1 Tear 1 Semester | | 3 | 0 | 0 | 3 | | | | SOCIAL NETWORKING | | | | | | | | # **Course Objectives:** - Formalize different types of entities and relationships as nodes and edges and represent this information as relational data - Plan and execute network analytical computations - Use advanced network analysis software to generate visualizations and perform empirical investigations of network data - Interpret and synthesize the meaning of the results with respect to a question, goal, or task - Collect network data in different ways and from different sources while adhering to legal standards and ethics standards #### **Course Outcomes:** After completing the course student should: - Know basic notation and terminology used in network science - Be able to visualize, summarize and compare networks - Illustrate basic principles behind network analysis algorithms - Develop practical skills of network analysis in R programming language - Be capable of analyzing real work networks #### UNIT I Social Network Analysis: Preliminaries and definitions, Erdos Number Project, Centrality measures, Balance and Homophily. #### **UNIT II** Random graph models: Random graphs and alternative models, Models of network growth, Navigation in social Networks, Cohesive subgroups, Multidimensional Scaling, Structural equivalence, roles and positions. # **UNIT III** Network topology and diffusion, Contagion in Networks, Complex contagion, Percolation and information, Navigation in Networks Revisited. #### **UNIT IV** Small world experiments, small world models, origins of small world, Heavy tails, Small Diameter, Clustering of connectivity, The ErdosRenyi Model, Clustering Models. # **UNIT V** Network structure -Important vertices and page rank algorithm, towards rational dynamics in networks, basics of game theory, Coloring and consensus, biased voting, network formation games, network structure and equilibrium, behavioral experiments, Spatial and agent-based models. # DEPARTMENT OF INFORMATION TECHNOLOGY # **Text Books:** - 1) S. Wasserman and K. Faust. "Social Network Analysis: Methods and Applications", Cambridge University Press. - 2) D. Easley and J. Kleinberg, "Networks, Crowds and Markets: Reasoning about a highly connected world", Cambridge University Press, 1st edition, 2010 # **Reference Books:** - 1) Maarten van Steen. "Graph Theory and Complex Networks. An Introduction", 2010. - 2) Reza Zafarani, Mohammed Ali Abbasi, Huan Liu. "Social Media Mining: An Introduction". Cambridge University Press 2014. - 3) Maksim Tsvetovat and Alexander Kouznetsov. "Social Network Analysis for Startups". O'Reilly Media, 2011. #### e-Resources: - 1) https://www.classcentral.com/course/edx-social-network-analysis-sna-9134 - 2) https://www.coursera.org/learn/social-network-analysis # DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – I Semester | | L | T | P | C | | | |----------------------|----------------------------|---|---|---|---|--|--| | 1v 1ear – I Semester | | 3 | 0 | 0 | 3 | | | | | AD-HOC AND SENSOR NETWORKS | | | | | | | # **Course Objectives:** From the course the student will learn - Architect sensor networks for various application setups - Devise appropriate data dissemination protocols and model links cost - Understanding of the fundamental concepts of wireless sensor networks and has a basic knowledge of the various protocols at various layers - Evaluate the performance of sensor networks and identify bottlenecks # **Course Outcomes:** - Evaluate the principles and characteristics of mobile ad hoc networks (MANETs) and what distinguishes them from infrastructure-based networks - Determine the principles and characteristics of wireless sensor networks - Discuss the challenges in designing MAC, routing and transport protocols for wireless ad-hoc sensor networks - Illustrate the various sensor network Platforms, tools and applications - Demonstrate the issues and challenges in security provisioning and also familiar with the mechanisms for implementing security and trust mechanisms in MANETs and WSNs # **UNIT I** Introduction to Ad Hoc Wireless Networks- Cellular and Ad Hoc Wireless Networks, Characteristics of MANETs, Applications of MANETs, Issues and Challenges of MANETs, Ad Hoc Wireless Internet, MAC protocols for Ad hoc Wireless Networks-Issues, Design Goals and Classifications of the MAC Protocols. #### **UNIT II** Routing Protocols for Ad Hoc Wireless Networks- Issues in Designing a Routing Protocol, Classifications of Routing Protocols, Topology-based versus Position-based Approaches, Issues and design goals of a Transport layer protocol, Classification of Transport layer solutions, TCP over Ad hoc Wireless Networks, Solutions for TCP over Ad Hoc Wireless Networks, Other Transport layer protocols. # **UNIT III** Security protocols for Ad hoc Wireless Networks- Security in Ad hoc Wireless Networks, Network Security Requirements, Issues and Challenges in Security Provisioning, Network Security Attacks, Key Management, Secure Routing in Ad hoc Wireless Networks, Cooperation in MANETs, Intrusion Detection Systems. # **UNIT IV** Basics of Wireless Sensors and Applications- The Mica Mote, Sensing and Communication Range, Design Issues, Energy Consumption, Clustering of Sensors, Applications, Data Retrieval in Sensor Networks-Classification of WSNs, MAC layer, Routing layer, Transport layer, High-level application layer support, Adapting to the inherent dynamic nature of WSNs. # DEPARTMENT OF INFORMATION TECHNOLOGY # **UNIT V** Security in WSNs- Security in WSNs, Key Management in WSNs, Secure Data Aggregation in WSNs, Sensor Network Hardware-Components of Sensor Mote, Sensor Network Operating Systems—TinyOS, LA-TinyOS, SOS, RETOS, Imperative Language-nesC, Dataflow Style Language- TinyGALS, Node-Level Simulators, NS-2 and its sensor network extension, TOSSIM. #### **Text Books:** - 1) Ad Hoc Wireless Networks Architectures and Protocols, C. Siva Ram Murthy, B. S. Murthy, Pearson Education, 2004. - 2) Ad Hoc and Sensor Networks Theory and Applications, Carlos Corderio Dharma P.Aggarwal, World Scientific Publications / Cambridge University Press, March 2006. - 3) Wireless Sensor Networks Principles and Practice, Fei Hu, Xiaojun Cao, An Auerbach book, CRC Press, Taylor & Francis Group, 2010. #### **Reference Books:** - 1) Wireless Sensor Networks: An Information Processing Approach, Feng Zhao, Leonidas Guibas, Elsevier Science imprint, Morgan Kauffman Publishers, 2005, rp2009. - 2) Wireless Ad hoc Mobile Wireless Networks Principles, Protocols and Applications, Subir Kumar Sarkar, et al., Auerbach Publications, Taylor & Francis Group, 2008. - 3) Ad hoc Networking, Charles E.Perkins, Pearson Education, 2001 - 4) Wireless Ad hoc Networking, Shih-Lin Wu, Yu-Chee Tseng, Auerbach Publications, Taylor & Francis Group, 2007. # DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – I Semester | | L | T | P | C | | |----------------------|--|---|---|---|---|--| | 1 Tear – I Schiester | | 3 | 0 | 0 | 3 | | | CLOUD COMPUTING | | | | | | | # **Course Objectives:** - To implement Virtualization - To implement Task Scheduling algorithms - Apply Map-Reduce concept to applications - To build Private Cloud - Broadly educate to know the impact of engineering on legal and societal issues involved #### **Course Outcomes:** At the end of the course, student will be able to - Interpret the key dimensions of the challenge of Cloud Computing - Examine the economics, financial, and technological implications for selecting cloud computing for own organization - Assessing the financial, technological, and organizational capacity of employer's for actively initiating and installing cloud-based applications - Evaluate own organizations' needs for capacity building and training in cloud computing-related IT areas - Illustrate Virtualization for Data-Center Automation #### **UNIT I** Introduction: Network centric computing, Network centric content, peer-to -peer systems, cloud computing delivery models and services, Ethical issues, Vulnerabilities, Major challenges for cloud computing. Parallel and Distributed Systems: introduction, architecture, distributed systems, communication protocols, logical clocks, message delivery rules, concurrency, and model concurrency with Petri Nets. # **UNIT II** Cloud Infrastructure: At Amazon, The Google Perspective, Microsoft Windows Azure, Open Source Software Platforms, Cloud storage diversity, Inter cloud, energy use and ecological impact, responsibility sharing, user experience, Software licensing. Cloud Computing: Applications and Paradigms: Challenges for cloud, existing cloud applications and new opportunities, architectural styles, workflows, The Zookeeper, HPC on cloud. #### **UNIT III** Cloud Resource virtualization: Virtualization, layering and virtualization, virtual machine monitors, virtual machines, virtualization- full and para, performance and security isolation, hardware support for virtualization, Case Study: Xen, vBlades. Cloud Resource Management and Scheduling: Policies and Mechanisms, Applications of control theory to task scheduling, Stability of a two-level resource allocation architecture, feedback control based on dynamic thresholds, coordination, resource bundling, scheduling algorithms, fair queuing, start time fair queuing, cloud scheduling subject to deadlines, Scheduling Map Reduce applications, Resource management and dynamic application scaling # DEPARTMENT OF INFORMATION TECHNOLOGY # **UNIT IV** Storage Systems: Evolution of storage technology, storage models, file systems and database, distributed file systems, general parallel file systems. Google file system. Apache Hadoop, Big Table, Megastore (Text book 1), Amazon Simple Storage Service(S3) (Text book 2) Cloud Security: Cloud security risks, security – a top concern for cloud users, privacy and privacy impact assessment, trust, OS security, Virtual machine security, Security risks # **UNIT V** Cloud Application Development: Amazon Web Services: EC2 – instances, connecting clients, security rules, launching, usage of S3 in Java, Cloud based simulation of a Distributed trust algorithm, Cloud service for adaptive data streaming (Text Book 1), Google: Google App Engine, Google Web Toolkit (Text Book 2), Microsoft: Azure Services Platform, Windows live, Exchange Online, Share Point Services, Microsoft Dynamics CRM (Text Book 2) #### **Text Books:** - 1) Cloud Computing, Theory and Practice,1st Edition, Dan C Marinescu, MK Elsevier publisher .2013 - 2) Cloud Computing, A Practical Approach, 1st Edition, Anthony T Velte, Toby J Velte, Robert Elsenpeter, TMH, 2017. #### **Reference books:** - 1) Mastering Cloud Computing, Foundations and Application Programming,1st Edition, Raj Kumar Buyva, Christen vecctiola, S Tammarai selvi, TMH,2013. - 2) Essential of Cloud Computing, 1st Edition, K Chandrasekharan, CRC Press, 2014. - 3) Cloud Computing, A Hands on Approach, Arshdeep Bahga, Vijay Madisetti, Universities Press, 2014. # DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – I Semester | | L | T | P | C | | |----------------------|--|---|---|---|---|--| | 1v Tear – I Semester | | 3 | 0 | 0 | 3 | | | DESIGN PATTERNS | | | | | | | # **Course Objectives:** - Demonstration of patterns related to object oriented design. - Describe the design patterns that are common in software applications - Analyze a software development problem and express it - Design a module structure to solve a problem, and evaluate alternatives - Implement a module so that it executes efficiently and correctly # **Course Outcomes:** - Construct a design consisting of a collection of modules - Examine well-known design patterns (such as Iterator, Observer, Factory and Visitor) - Distinguish between different categories of design patterns - Ability to understand and apply common design patterns to incremental/iterative development - Identify appropriate patterns for design of given problem - Design the software using Pattern Oriented Architectures # UNIT I Introduction: Design Pattern, Design Patterns in Smalltalk MVC, Describing Design Patterns, The Catalog of Design Patterns, Organizing the Catalog, How Design Patterns Solve Design Problems, How to Select a Design Pattern, How to Use a Design Pattern. A Case Study: Designing a Document Editor: Design Problems, Document Structure, Formatting, Embellishing the User Interface, Supporting Multiple Look-and-Feel Standards, Supporting Multiple Window Systems, User Operations Spelling Checking and Hyphenation. #### **UNIT II** Creational Patterns: Abstract Factory, Builder,
Factory Method, Prototype, Singleton, Discussion of Creational Patterns. # **UNIT III** Structural Pattern: Adapter, Bridge, Composite, Decorator, açade, Flyweight, Proxy. # **UNIT IV** Behavioral Patterns: Chain of Responsibility, Command, Interpreter, Iterator, Mediator, Memento, Observer. #### **UNIT V** Behavioral Patterns: State, Strategy, Template Method, Visitor, Discussion of Behavioral Patterns. What to Expect from Design Patterns, a Brief History, the Pattern Community an Invitation, a Parting Thought. # DEPARTMENT OF INFORMATION TECHNOLOGY # **Text Books:** 1) "Design Patterns", Erich Gamma, Pearson Education. # **Reference Books:** - 1) "Head First Design patterns", Eric Freeman & Elisabeth Freeman, O'REILLY, 2007. - 2) "Design Patterns in Java", Steven John Metsker & William C. Wake, Pearson education, 2006 - 3) "J2EE Patterns", Deepak Alur, John Crupi & Dan Malks, Pearson education, 2003. - 4) "Design Patterns in C#", Steven John metsker, Pearson education, 2004. - 5) "Pattern Oriented Software Architecture", F.Buschmann & others, John Wiley & Sons. #### e-Resources: - 1) https://www.javatpoint.com/design-patterns-in-java - 2) https://www.tutorialspoint.com/design_pattern/design_pattern_overview.htm # DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – I Semester | | L | T | P | C | | |----------------------|--|---|---|---|---|--| | 1v 1ear – 1 Semester | | 3 | 0 | 0 | 3 | | | DISTRIBUTED SYSTEMS | | | | | | | # **Course Objectives:** - To understand the foundations of distributed systems. - To learn issues related to clock Synchronization and the need for global state in distributed systems. - To learn distributed mutual exclusion and deadlock detection algorithms. - To understand the significance of agreement, fault tolerance and recovery protocols in Distributed Systems - To learn the characteristics of peer-to-peer and distributed shared memory systems #### **Course Outcomes:** At the end of the course, the students will be able to: - Enumerate the foundations and issues of distributed systems - Illustrate the various synchronization issues and global state for distributed systems - Demonstrate the Mutual Exclusion and Deadlock detection algorithms in distributed systems - Describe the agreement protocols and fault tolerance mechanisms in distributed systems - Describe the features of peer-to-peer and distributed shared memory systems # **UNIT I** Introduction: Definition, Relation to computer system components, Motivation, Relation to parallel systems, Message-passing systems versus shared memory systems, Primitives for distributed communication, Synchronous versus asynchronous executions, Design issues and challenges. A model of distributed computations: A distributed program, A model of distributed executions, Models of communication networks, Global state, Cuts, Past and future cones of an event, Models of process communications. Logical Time: A framework for a system of logical clocks, Scalar time, Vector time, Physical clock synchronization: NTP. # **UNIT II** Message ordering and group communication: Message ordering paradigms, Asynchronous execution with synchronous communication, Synchronous program order on an asynchronous system, Group communication, Causal order (CO), Total order. Global state and snapshot recording algorithms: Introduction, System model and definitions, Snapshot algorithms for FIFO channels # **UNIT III** Distributed mutual exclusion algorithms: Introduction – Preliminaries – Lamport's algorithm – Ricart-Agrawala algorithm – Maekawa's algorithm – Suzuki–Kasami's broadcast algorithm. Deadlock detection in distributed systems: Introduction – System model – Preliminaries – Models of deadlocks – Knapp's classification – Algorithms for the single resource model, the AND model and the OR model # DEPARTMENT OF INFORMATION TECHNOLOGY # **UNIT IV** Check pointing and rollback recovery: Introduction – Background and definitions – Issues in failure recovery – Checkpoint-based recovery – Log-based rollback recovery – Coordinated check pointing algorithm – Algorithm for asynchronous check pointing and recovery. Consensus and agreement algorithms: Problem definition – Overview of results – Agreement in a failure – free system – Agreement in synchronous systems with failures. # **UNIT V** Peer-to-peer computing and overlay graphs: Introduction – Data indexing and overlays – Chord – Content addressable networks – Tapestry. Distributed shared memory: Abstraction and advantages – Memory consistency models –Shared memory Mutual Exclusion # **Text Books:** - 1) Distributed Systems Concepts and Design, George Coulouris, Jean Dollimore and Tim Kindberg, Fifth Edition, Pearson Education, 2012. - 2) Distributed computing: Principles, algorithms, and systems, Ajay D Kshemkalyani and Mukesh Singhal, Cambridge University Press, 2011. # **Reference Books:** - Distributed Operating Systems: Concepts and Design, Pradeep K Sinha, Prentice Hall of India, 2007. - 2) Advanced concepts in operating systems. Mukesh Singhal and Niranjan G. Shivaratri, McGraw-Hill, 1994. - 3) Distributed Systems: Principles and Paradigms, Tanenbaum A.S., Van Steen M., Pearson Education, 2007. #### e-Resources: 1) https://nptel.ac.in/courses/106/106/106106168/ # DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – I Semester | | L | T | P | C | | | |----------------------|--|---|---|---|---|--|--| | 1v Tear – I Semester | | 3 | 0 | 0 | 3 | | | | DevOps | | | | | | | | # **Course Objectives:** • DevOps improves collaboration and productivity by automating infrastructure and workflows and continuously measuring applications performance # **Course Outcomes:** At the end of the course, student will be able to - Enumerate the principles of continuous development and deployment, automation of configuration management, inter-team collaboration, and IT service agility - Describe DevOps & DevSecOps methodologies and their key concepts - Illustrate the types of version control systems, continuous integration tools, continuous monitoring tools, and cloud models - Set up complete private infrastructure using version control systems and CI/CD tools # **UNIT I** Phases of Software Development life cycle. Values and principles of agile software development. #### UNIT II Fundamentals of DevOps: Architecture, Deployments, Orchestration, Need, Instance of applications, DevOps delivery pipeline, DevOps eco system. #### **UNIT III** DevOps adoption in projects: Technology aspects, Agiling capabilities, Tool stack implementation, People aspect, processes # **UNIT IV** CI/CD: Introduction to Continuous Integration, Continuous Delivery and Deployment, Benefits of CI/CD, Metrics to track CICD practices #### **UNIT V** Devops Maturity Model: Key factors of DevOps maturity model, stages of Devops maturity model, DevOps maturity Assessment #### **Text Books:** - 1) The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in Technology Organizations, Gene Kim, John Willis, Patrick Debois, Jez Humb, 1st Edition, O'Reilly publications, 2016. - 2) What is Devops? Infrastructure as code, 1st Edition, Mike Loukides, O'Reilly publications, 2012. # DEPARTMENT OF INFORMATION TECHNOLOGY # **Reference Books:** - 1) Building a DevOps Culture, 1st Edition, Mandi Walls, O'Reilly publications, 2013. - 2) The DevOps 2.0 Toolkit: Automating the Continuous Deployment Pipeline With Containerized Microservices, 1st Edition, Viktor Farcic, CreateSpace Independent Publishing Platform publications, 2016 - 3) Continuous Delivery: Reliable Software Releases Through Build, Test, and Deployment Automation, 1st Edition, Jez Humble and David Farley, 2010. - 4) Achieving DevOps: A Novel About Delivering the Best of Agile, DevOps, and Microservices, 1st Edition, Dave Harrison, Knox Lively, Apress publications, 2019. # e-Resources: - 1) https://www.javatpoint.com/devops - 2) https://github.com/nkatre/Free-DevOps-Books-1/blob # DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – I Semester | | L | T | P | C | |----------------------|--------------------|---|---|---|---| | | | 3 | 0 | 0 | 3 | | | INTERNET OF THINGS | | | | | # **Course Objectives:** - Identify problems that are amenable to solution by AI methods, and which AI methods may be suited to solving a given problem - Formalize a given problem in the language/framework of different AI methods - Implement basic AI algorithms. - Design and carry out an empirical evaluation of different algorithms on problem formalization, and state the conclusions that the evaluation supports #### **Course Outcomes:** - Demonstrate knowledge and understanding of the security and ethical issues of the Internet of Things - Conceptually identify vulnerabilities, including recent attacks, involving the Internet of Things - Develop critical thinking skills - Compare and contrast the threat environment based on industry and/or device type #### UNIT I The Internet of Things: An Overview of Internet of Things, Internet of Things Technology, behind IoTs Sources of the IoTs, M2M Communication, Examples of IoTs, Design Principles For Connected Devices #### **UNIT II** Business Models for Business Processes in the Internet of Things, IoT/M2M systems LAYERS AND designs standardizations ,Modified OSI Stack for the IoT/M2M Systems ,ETSI M2M domains and High-level capabilities ,Communication Technologies, Data Enrichment and Consolidation and Device Management Gateway Ease of designing and affordability #### **UNIT III** Design Principles for the Web Connectivity for connected-Devices, Web Communication protocols for Connected Devices, Message Communication protocols for Connected Devices, Web Connectivity for connected-Devices. # **UNIT IV** Data link layer of IoT, Wireless Communication Technologies, Wired Communication Technologies, Manet Networks: Network Layer of IoT, 6lowPAN adaptation layer for devices with limited resources, Dynamic routing protocols for wireless adhoc
networks Communication protocols for IoT, Service oriented protocol(COAP), Communication protocols based on the exchange of messages(MQTT), Service discovery protocols #### **UNIT V** Data Acquiring, Organizing and Analytics in IoT/M2M, Applications/ Services/ Business Processes, IOT/M2M Data Acquiring and Storage, Business Models for Business Processes in the Internet Of Things, Organizing Data, Transactions, Business Processes, Integration and Enterprise Systems. Data Collection, Storage and Computing Using a Cloud Platform for IoT/M2M Applications/Services # **Text Books:** - 1) Internet of Things: Architecture, Design Principles And Applications, Rajkamal, McGraw Hill Higher Education - 2) Internet of Things, A.Bahgya and V.Madisetti, University Press, 2015. - 3) Internet of Things from Hype to Reality: The road to Digitization, Ammar Rayes Samersalam. # DEPARTMENT OF INFORMATION TECHNOLOGY # **Reference Books:** - 1) Designing the Internet of Things, Adrian McEwen and Hakim Cassimally, Wiley. - 2) Getting Started with the Internet of Things Cuno Pfister, Oreilly. - 3) Internet of Things and Data Analytics Handbook, HWAIYU GENG, Wiley publications. # DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – I Semester | | L | T | P | C | |----------------------|--------------|---|---|---|---| | TV Tear Teamester | | 3 | 0 | 0 | 3 | | | DATA SCIENCE | | | | | # **Course Objectives:** From the course the student will learn - Provide you with the knowledge and expertise to become a proficient data scientist. - Demonstrate an understanding of statistics and machine learning concepts that are vital for data science - Learn to statistically analyze a dataset; - Explain the significance of exploratory data analysis (EDA) in data science. - Critically evaluate data visualizations based on their design and use for communicating stories from data # **Course Outcomes:** At the end of the course, student will be able to - Describe what Data Science is and the skill sets needed to be a data scientist - Explain in basic terms what Statistical Inference means. Identify probability distributions commonly used as foundations for statistical modeling. Fit a model to data - Use R to carry out basic statistical modeling and analysis - Apply basic tools (plots, graphs, summary statistics) to carry out EDA - Describe the Data Science Process and how its components interact. - Use APIs and other tools to scrap the Web and collect data - Apply EDA and the Data Science process in a case study # UNIT I Introduction, The Ascendance of Data, Motivating Hypothetical: Data Sciencester, Finding Key Connectors, The Zen of Python, Getting Python, Virtual Environments, Whitespace Formatting, Modules, Functions, Strings, Exceptions, Lists, Tuples, Dictionaries defaultdict, Counters, Sets, Control Flow, Truthiness, Sorting, List Comprehensions, Automated Testing and assert, Object-Oriented Programming, Iterables and Generators, Randomness, Regular Expressions, Functional Programming, zip and Argument Unpacking, args and kwargs, Type Annotations, Type Annotations. # UNIT II Visualizing Data: matplotlib, Bar Charts, Line Charts, Scatterplots. Linear Algebra: Vectors, Matrices, Statistics: Describing a Single Set of Data, Correlation, Simpson's Paradox, Some Other Correlational Caveats, Correlation and Causation. Gradient Descent: The Idea Behind Gradient Descent, Estimating the Gradient, Using the Gradient, Choosing the Right Step Size, Using Gradient Descent to Fit Models, Minibatch and Stochastic Gradient Descent. #### UNIT III Getting Data: stdin and stdout, Reading Files, Scraping the Web, Using APIs, Working with Data: Exploring Your DataUsing NamedTuples Dataclasses, Cleaning and Munging, Manipulating Data, Rescaling, Dimensionality Reduction. # DEPARTMENT OF INFORMATION TECHNOLOGY Probability: Dependence and Independence, Conditional Probability, Bayes's Theorem, Random Variables, Continuous Distributions, The Normal Distribution, The Central Limit Theorem # **UNIT IV** Machine Learning: Modeling, Overfitting and Underfitting, Correctness, The Bias-Variance Tradeoff, Feature Extraction and Selection, k-Nearest Neighbors, Naive Bayes, Simple Linear Regression, Multiple Regression, Digression, Logistic Regression # **UNIT V** Support Vector Machines, Decision Trees, Neural Networks: Perceptrons, Feed-Forward Neural Networks, Backpropagation. Clustering: The Idea, The Model, Choosing k, Bottom-Up Hierarchical Clustering. Recommender Systems: Manual Curation, Recommending What's Popular, User-Based Collaborative Filtering, Item-Based Collaborative Filtering, Matrix Factorization Data Ethics, Building Bad Data Products, Trading Off Accuracy and Fairness, Collaboration, Interpretability, Recommendations, Biased Data, Data Protection IPython, Mathematics, NumPy, pandas, scikit-learn, Visualization, R #### **Text books:** - 1) Joel Grus, "Data Science From Scratch", OReilly. - 2) Allen B.Downey, "Think Stats", OReilly. #### **Reference Books:** - 1) Doing Data Science: Straight Talk From The Frontline, 1st Edition, Cathy O'Neil and Rachel Schutt, O'Reilly, 2013. - 2) Mining of Massive Datasets, 2nd Edition, Jure Leskovek, Anand Rajaraman and Jeffrey Ullman, v2.1, Cambridge University Press, 2014. - 3) "The Art of Data Science", 1st Edition, Roger D. Peng and Elizabeth matsui, Lean Publications, 2015 - 4) "Algorithms for Data Science", 1st Edition, Steele, Brian, Chandler, John, Reddy, Swarna, Springer's Publications, 2016. # e-Resources: - 1) https://github.com/joelgrus/data-science-from-scratch - 2) https://github.com/donnemartin/data-science-ipython-notebooks - 3) https://github.com/academic/awesome-datascience # DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – I Semester | | L | T | P | C | | |----------------------|--|---|---|---|---|--| | 1 Tear Teamester | | 3 | 0 | 0 | 3 | | | BIOMETRICS | | | | | | | # **Course Objectives:** - Describe the principles of the three core biometric modalities (face, fingerprint and iris), and know how to deploy them in authentication scenarios - Organize and conduct biometric data collections, and apply biometric databases in system evaluation - Calculate distributions of within- and between-class matching scores, and calculate various error estimates based on these distributions - Identify the privacy and security concerns surrounding biometric systems, and know how to address them in such a way that balances both - Recognize differences between algorithm design and systems engineering in biometrics - Deploy statistical methods in biometric system evaluation - Itemize the most up-to-date examples of real biometric applications in human authentication # **Course Outcomes:** At the end of the course, student will be able to - Demonstrate knowledge of the basic physical and biological science and engineering principles underlying biometric systems - Analyze biometric systems at the component level and be able to analyze and design basic biometric system applications - Illustrate to work effectively in teams and express their work and ideas orally and in writing - Identify the sociological and acceptance issues associated with the design and implementation of biometric systems - Elaborate various Biometric security issues in real world applications #### UNIT I Biometrics- Introduction, benefits of biometrics over traditional authentication systems, benefits of biometrics in identification systems, selecting a biometric for a system, Applications, Key biometric terms and processes, biometric matching methods, Accuracy in biometric systems # **UNIT II** Physiological Biometric Technologies- Fingerprints, Technical description, characteristics, Competing technologies, strengths, weaknesses, deployment, Facial scan, Technical description, characteristics, weaknesses, deployment, Iris scan, Technical description, characteristics, strength, weaknesses, deployment # **UNIT III** Physiological Biometric Technologies- Hand Biometric: Palm Print, Vein Pattern, Signature and Hand Writing Technology-Technical description, characteristics, strengths, weaknesses and deployment. #### DEPARTMENT OF INFORMATION TECHNOLOGY # **UNIT IV** Behavioural Biometric Technologies- Voice Recognition and Key stroke dynamics: Introduction, working, strengths and weaknesses, Voice Recognition Applications, Understanding Voice Recognition, Choice of Features, Speaker modeling, Pattern Matching, Key Stroke Dynamics, Active and Passive Biometrics. # **UNIT V** Multi biometrics and multi factor biometrics- two-factor authentication with passwords, tickets and tokens, executive decision, implementation plan, Securing Biometric Template- Cancelable Biometrics, Authentication, Security Analysis. #### **Text Books:** - 1) A Privacy Enhancing Biometric, Chuck Wilson, Vein pattern recognition, CRC press, 2010 - 2) Biometrics: Identity Verification in a Network, 1st Edition, Samir Nanavathi, Michel Thieme, and Raj Nanavathi, Wiley Eastern, 2002 - 3) Implementing Biometric Security, 1st Edition, John Chirillo and Scott Blaul Wiley Eastern Publication, 2005 # **Reference Books:** - 1) Security, Risk and the Biometric State: Governing Borders and Bodies, 1st Edition, Benjamin Muller, Routledge, 2010 - 2) Handbook of Biometrics, Jain, Anil K.; Flynn, Patrick; Ross, Arun A. (Eds.), Springer, 2008 - 3) Handbook of Biometrics, Anil K. Jain, Patrick Flynn, Arun A. Ross, Springer, 2007 - 4) Biometrics for Network Security, 1st Edition, John Berger, Prentice Hall, 2004 # DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – I Semester | | L | T | P | C | |----------------------|--------------------------------|---|---|---|---| | 1 Tour Touriester | | 0 | 0 | 2 | 1 | | UNIFI | ED MODELING LANGUAGE (UML) LAB | | | | | # **Course Objectives:** - To know the practical issues of the different object oriented analysis and design concepts - Inculcate the art of object oriented software analysis and design - Apply forward and reverse engineering of a software system - Carry out
the analysis and design of a system in an object oriented way #### **Course Outcomes:** At the end of the course, student will be able to - Know the syntax of different UML diagrams - Create use case documents that capture requirements for a software system - Create class diagrams that model both the domain model and design model of a software system - Create interaction diagrams that model the dynamic aspects of a software system - Write code that builds a software system - Develop simple applications **Note:** For performing the experiments consider any case study (ATM/ Banking/ Library/Hospital management systems) # **Experiment 1:** Familiarization with Rational Rose or Umbrella environment # **Experiment 2:** - a) Identify and analyze events - b) Identify Use cases - c) Develop event table # **Experiment 3:** - a) Identify & analyze domain classes - b) Represent use cases and a domain class diagram using Rational Rose - c) Develop CRUD matrix to represent relationships between use cases and problem domain classes # **Experiment 4:** - a) Develop Use case diagrams - b) Develop elaborate Use case descriptions & scenarios - c) Develop prototypes (without functionality) # DEPARTMENT OF INFORMATION TECHNOLOGY # **Experiment 5:** - a) Develop system sequence diagrams and high-level sequence diagrams for each use case - b) Identify MVC classes / objects for each use case - c) Develop Detailed Sequence Diagrams / Communication diagrams for each use case showing interactions among all the three-layer objects # **Experiment 6:** - a) Develop detailed design class model (use GRASP patterns for responsibility assignment) - b) Develop three-layer package diagrams for each case study # **Experiment 7:** - a) Develop Use case Packages - b) Develop component diagrams - c) Identify relationships between use cases and represent them - d) Refine domain class model by showing all the associations among classes # **Experiment 8:** a) Develop sample diagrams for other UML diagrams - state chart diagrams, activity diagrams and deployment diagrams # DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – I Semester | | L | T | P | C | |----------------------|------------|---|---|---|---| | TV Teur T Semester | | 0 | 0 | 0 | 2 | | | Project –I | | | | | Note: The marks are awarded based on: Selection of Area, Defining the problem, Submission of the Abstract and Presentation of seminar. # DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – I Semester | | L | T | P | C | |----------------------|---------------|---|---|---|---| | 1 Car I Semester | | 3 | 0 | 0 | 0 | | | IPR & PATENTS | | | | | # **Course Objectives:** - To know the importance of Intellectual property rights, which plays a vital role in advanced Technical and Scientific disciplines - Imparting IPR protections and regulations for further advancement, so that the students can familiarize with the latest developments # **Course Outcomes:** - IPR Laws and patents pave the way for innovative ideas which are instrumental for inventions to seek Patents - Student gets an insight on Copyrights, Patents and Software patents which are instrumental for further advancements #### **UNIT I** Introduction to Intellectual Property Rights (IPR): Concept of Property - Introduction to IPR - International Instruments and IPR - WIPO - TRIPS - WTO -Laws Relating to IPR - IPR Tool Kit - Protection and Regulation - Copyrights and Neighboring Rights - Industrial Property - Patents - Agencies for IPR Registration - Traditional Knowledge -Emerging Areas of IPR - Layout Designs and Integrated Circuits - Use and Misuse of Intellectual Property Rights. # **UNIT II** Copyrights and Neighboring Rights: Introduction to Copyrights – Principles of Copyright Protection – Law Relating to Copyrights - Subject Matters of Copyright – Copyright Ownership – Transfer and Duration – Right to Prepare Derivative Works –Rights of Distribution – Rights of Performers – Copyright Registration – Limitations – Infringement of Copyright – Relief and Remedy – Case Law - Semiconductor Chip Protection Act. # **UNIT III** Introduction to Patents - Laws Relating to Patents in India - Patent Requirements - Product Patent and Process Patent - Patent Search - Patent Registration and Granting of Patent - Exclusive Rights - Limitations - Ownership and Transfer — Revocation of Patent - Patent Appellate Board - Infringement of Patent - Compulsory Licensing — Patent Cooperation Treaty - New developments in Patents - Software Protection and Computer related Innovations #### **UNIT IV** Introduction to Trademarks – Laws Relating to Trademarks – Functions of Trademark – Distinction between Trademark and Property Mark – Marks Covered under Trademark Law - Trade Mark Registration – Trade Mark Maintenance – Transfer of rights - Deceptive Similarities Likelihood of Confusion - Dilution of Ownership – Trademarks Claims and Infringement – Remedies – Passing Off Action. # DEPARTMENT OF INFORMATION TECHNOLOGY # **UNIT V** Introduction to Trade Secrets – General Principles - Laws Relating to Trade Secrets – Maintaining Trade Secret – Physical Security – Employee Access Limitation – Employee Confidentiality Agreements Breach of Contract – Law of Unfair Competition – Trade Secret Litigation – Applying State Law. Cyber Law – Information Technology Act 2000 - Protection of Online and Computer Transactions – E-commerce - Data Security – Authentication and Confidentiality - Privacy - Digital Signatures – Certifying Authorities - Cyber Crimes - Prevention and Punishment – Liability of Network Providers. # **References:** - 1) Intellectual Property Rights (Patents & Cyber Law), Dr. A. Srinivas. Oxford University Press, New Delhi. - 2) Deborah E.Bouchoux: Intellectual Property, Cengage Learning, New Delhi. - 3) Prabhuddha Ganguli: Intellectual Property Rights, Tata Mc-Graw –Hill, New Delhi - 4) Richard Stim: Intellectual Property, Cengage Learning, New Delhi. - 5) Kompal Bansal & Parishit Bansal Fundamentals of IPR for Engineers, B. S. Publications (Press). - 6) Cyber Law Texts & Cases, South-Western's Special Topics Collections. - 7) R.Radha Krishnan, S.Balasubramanian: Intellectual Property Rights, Excel Books. New Delhi. - 8) M.Ashok Kumar and MohdIqbal Ali: Intellectual Property Rights, Serials Pub. # DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – II Semester | | L | T | P | C | |-----------------------|------------------------------------|---|---|---|---| | 1 Tour 11 Somester | | 3 | 0 | 0 | 3 | | MANA | GEMENT AND ORGANIZATIONAL BEHAVIOR | | | | | # **Course Objectives:** - To familiarize with the process of management, principles, leadership styles and basic concepts on Organization - To provide conceptual knowledge on functional management that is on Human resource management and Marketing management - To provide basic insight into select contemporary management practices and Strategic Management - To learn theories of motivation and also deals with individual behavior, their personality and perception of individuals - To understand about organizations groups that affect the climate of an entire organizations which helps employees in stress management #### **Course Outcomes:** - After completion of the Course the student will acquire the knowledge on management functions, global leadership and organizational structure - Will familiarize with the concepts of functional management that is HRM and Marketing of new product developments - The learner is able to think in strategically through contemporary management practices - The learner can develop positive attitude through personality development and can equip with motivational theories - The student can attain the group performance and grievance handling in managing the organizational culture #### **UNIT I** Introduction: Management and organizational concepts of management and organization- Nature and Importance of Management, Functions of Management, System approach to Management - Taylor's Scientific Management Theory, Fayol's Principles of Management, Leadership Styles, Social responsibilities of Management. Designing Organizational Structures: Basic concepts related to Organization - Departmentation and Decentralization, MBO, Process and concepts. # **UNIT II** Functional Management: Human Resource Management (HRM) Concepts of HRM, Basic functions of HR Manager: Manpower planning, Recruitment, Selection, Training and Development, Wage and Salary Administration Performance Appraisal, Grievance Handling and Welfare Administration, Job Evaluation and Merit Rating. - Marketing Management: Concepts of Marketing, Marketing mix elements and marketing strategies. # DEPARTMENT OF INFORMATION TECHNOLOGY # **UNIT III** Strategic Management: Strategic Management and Contemporary Strategic Issues: Mission, Goals, Objectives, Policy, Strategy, Programmes, Elements of Corporate Planning Process, Environmental Scanning, Value Chain Analysis, SWOT Analysis, Steps in Strategy Formulation and implementation, Generic Strategy alternatives. Bench Marking and Balanced Score Card as Contemporary Business Strategies. # **UNIT IV** Individual Behavior: Perception-Perceptual process- Impression management- Personality development – Socialization – Attitude- Process- Formation- Positive attitude- Change – Learning – Learning organizations- Reinforcement Motivation – Process- Motives – Theories of Motivation: Maslow's Theory of Human Needs, Douglas McGregor's Theory X and Theory Y, Herzberg's Two-Factor Theory of Motivation, # **UNIT V** Group Dynamics: Types of Groups, Stages of Group Development, Group Behaviour and Group Performance Factors, Organizational conflicts: Reasons for Conflicts, Consequences of Conflicts in Organization, Types of Conflicts, Strategies for Managing Conflicts, Organizational Climate and Culture, Stress, Causes and effects, coping strategies of stress. # **Text Books:** - 1) Subba Rao P., Organizational Behaviour, Himalaya Publishing House. Mumbai - 2) L.M. Prasad, Principles and Practice of
Management. #### **Reference Books:** - 1) Fred Luthans Organizational Behaviour, TMH, New Delhi. - 2) Robins, Stephen P., Fundamentals of Management, Pearson, India. - 3) Kotler Philip & Keller Kevin Lane: Marketing Mangement 12/e, PHI, 2007 - 4) Koontz & Weihrich: Essentials of Management, 6/e, TMH, 2007 - 5) Kanishka Bedi, Production and Operations Management, Oxford University Press, 2007. # DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – II Semester | | L | T | P | C | |-----------------------|--------------------|---|---|---|---| | TV Tear II Semester | | 3 | 0 | 0 | 3 | | | Open Elective –III | | | | | | | Code: OE4201 | | | | | Note: The student has to take any one **open elective course** offered in the other departments (or) SWAYAM/NPTEL courses offered by other than parent department. (12 week minimum). Given below are some of the courses offered by NPTEL/SWAYAM | Electro | onics & Communication Engineering | Mathe | matics | |---------|---|---------|--| | 1) | Information Coding Theory | 1) | Optimization Techniques | | 2) | VLSI Design | 2) | Computational Number Theory and | | 3) | Signals & Systems | | Cryptography | | 4) | Digital Signal Processing | | | | Electri | cal and Electronics Engineering | Civil E | Engineering | | 1) | Networking Analysis | 1) | Intelligent transportation engineering | | 2) | Fuzzy Sets, Logic and Systems & | 2) | Remote Sensing and GI | | | Applications | 3) | Engineering Mechanics | | 3) | Energy Management Systems and | 4) | City and Metropolitan Planning | | | SCADA | 5) | Sustainable Materials and Green | | 4) | Industrial Safety Engineering | | Buildings | | Mecha | nical Engineering | | | | 1) | Industrial Automation and Control | | | | 2) | Robotics | | | | 3) | CAD | | | | 4) | Mechatronics And Manufacturing Automation | | | | 5) | Non Conventional Energy Resources | | | # DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – II Semester | | L | T | P | C | |-----------------------|---------------|---|---|---|---| | 1 Teal II Semester | | 3 | 0 | 0 | 3 | | | DEEP LEARNING | | | | | # **Course Objectives:** - Demonstrate the major technology trends driving Deep Learning - Build, train and apply fully connected deep neural networks - Implement efficient (vectorized) neural networks - Analyze the key parameters and hyper parameters in a neural network's architecture #### **Course Outcomes:** - Demonstrate the mathematical foundation of neural network - Describe the machine learning basics - Compare the different architectures of deep neural network - Build a convolutional neural network - Build and train RNN and LSTMs #### **UNIT I** Linear Algebra: Scalars, Vectors, Matrices and Tensors, Matrix operations, types of matrices, Norms, Eigen decomposition, Singular Value Decomposition, Principal Components Analysis. Probability and Information Theory: Random Variables, Probability Distributions, Marginal Probability, Conditional Probability, Expectation, Variance and Covariance, Bayes' Rule, Information Theory. Numerical Computation: Overflow and Underflow, Gradient-Based Optimization, Constrained Optimization, Linear Least Squares. # **UNIT II** Machine Learning: Basics and Underfitting, Hyper parameters and Validation Sets, Estimators, Bias and Variance, Maximum Likelihood, Bayesian Statistics, Supervised and Unsupervised Learning, Stochastic Gradient Descent, Challenges Motivating Deep Learning. Deep Feedforward Networks: Learning XOR, Gradient-Based Learning, Hidden Units, Architecture Design, Back-Propagation and other Differentiation Algorithms. #### **UNIT III** Regularization for Deep Learning: Parameter Norm Penalties, Norm Penalties as Constrained Optimization, Regularization and Under-Constrained Problems, Dataset Augmentation, Noise Robustness, Semi-Supervised Learning, Multi-Task Learning, Early Stopping, Parameter Tying and Parameter Sharing, Sparse Representations, Bagging and Other Ensemble Methods, Dropout, Adversarial Training, Tangent Distance, Tangent Prop and Manifold Tangent Classifier. Optimization for Training Deep Models: Pure Optimization, Challenges in Neural Network Optimization, Basic Algorithms, Parameter Initialization Strategies, Algorithms with Adaptive Learning Rates, Approximate Second-Order Methods, Optimization Strategies and Meta-Algorithms. #### **UNIT IV** Convolutional Networks: The Convolution Operation, Pooling, Convolution, Basic Convolution Functions, Structured Outputs, Data Types, Efficient Convolution Algorithms, Random or Unsupervised #### DEPARTMENT OF INFORMATION TECHNOLOGY Features, Basis for Convolutional Networks. #### **UNIT V** Sequence Modeling: Recurrent and Recursive Nets: Unfolding Computational Graphs, Recurrent Neural Networks, Bidirectional RNNs, Encoder-Decoder Sequence-to-Sequence Architectures, Deep Recurrent Networks, Recursive Neural Networks, Echo State Networks, LSTM, Gated RNNs, Optimization for Long-Term Dependencies, Auto encoders, Deep Generative Models. #### **Text Books:** - 1) Ian Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2016. - 2) Josh Patterson and Adam Gibson, "Deep learning: A practitioner's approach", O'Reilly Media, First Edition, 2017. #### **Reference Books:** - 1) Fundamentals of Deep Learning, Designing next-generation machine intelligence algorithms, Nikhil Buduma, O'Reilly, Shroff Publishers, 2019. - 2) Deep learning Cook Book, Practical recipes to get started Quickly, Douwe Osinga, O'Reilly, Shroff Publishers, 2019. #### e-Resources: - 1) https://keras.io/datasets/ - 2) http://deeplearning.net/tutorial/deeplearning.pdf - 3) https://arxiv.org/pdf/1404.7828v4.pdf - 4) https://github.com/lisa-lab/DeepLearningTutorials #### DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – II Semester | | L | T | P | C | |-----------------------|-------------------|---|---|---|---| | 1, 1eur 11 semester | | 3 | 0 | 0 | 3 | | | QUANTUM COMPUTING | | | | | #### **Course Objectives:** • This course teaches the fundamentals of quantum information processing, including quantum computation, quantum cryptography, and quantum information theory ### **Course Outcomes:** By the end of this course, the student is able to - Analyze the behaviour of basic quantum algorithms - Implement simple quantum algorithms and information channels in the quantum circuit model - Simulate a simple quantum error-correcting code - Prove basic facts about quantum information channels #### UNIT I Introduction: Quantum Measurements Density Matrices, Positive-Operator Valued Measure, Fragility of quantum information: Decoherence, Quantum Superposition and Entanglement, Quantum Gates and Circuits. #### **UNIT II** Quantum Basics and Principles: No cloning theorem & Quantum Teleportation, Bell's inequality and its implications, Quantum Algorithms & Circuits. #### **UNIT III** Algorithms: Deutsch and Deutsch-Jozsa algorithms, Grover's Search Algorithm, Quantum Fourier Transform, Shore's Factorization Algorithm. #### **UNIT IV** Performance, Security and Scalability: Quantum Error Correction: Fault tolerance; Quantum Cryptography, Implementing Quantum Computing: issues of fidelity; Scalability in quantum computing #### **UNIT V** Quantum Computing Models: NMR Quantum Computing, Spintronics and QED MODEL, Linear Optical MODEL, Nonlinear Optical Approaches; Limits of all the discussed approaches, Future of Quantum computing. #### **Textbooks:** - 1) Eric R. Johnston, Nic Harrigan, Mercedes and Gimeno-Segovia "Programming Quantum Computers: Essential Algorithms And Code Samples, SHROFF/O'Reilly. - 2) Dr. Christine Corbett Moran, Mastering Quantum Computing with IBM QX: Explore the world of quantum computing using the Quantum Composer and Qiskit, Kindle Edition Packt - 3) V.K Sahni, Quantum Computing (with CD), TATA McGrawHill. #### **References:** - 1) Chris Bernhardt, Quantum Computing for Everyone (The MIT Press) - 2) Michael A. Nielsen and Issac L. Chuang, "Quantum Computation and Information", Cambridge (2002). ### DEPARTMENT OF INFORMATION TECHNOLOGY - 3) Riley Tipton Perry, "Quantum Computing from the Ground Up", World Scientific Publishing Ltd (2012). - 4) Scott Aaronson, "Quantum Computing since Democritus", Cambridge (2013). - 5) P. Kok, B. Lovett, "Introduction to Optical Quantum Information Processing", Cambridge. #### e-Resources: - 1) https://nptel.ac.in/courses/104104082/ - 2) https://swayam.gov.in/nd1_noc19_cy31/preview #### DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – II Semester | | L | T | P | C | |-----------------------|-------------------------|---|---|---|---| | 1 Tear 11 Semester | | 3 | 0 | 0 | 3 | | | BLOCKCHAIN TECHNOLOGIES | | | | | #### **Course Objectives:** By the end of the course, students will be able to - Understand how block chain systems (mainly Bit coin and Ethereum) work and to securely interact with them - Design, build, and deploy smart contracts and distributed applications - Integrate ideas from block chain technology into their own projects #### Course Outcomes: At the end of the course, student will be able to - Demonstrate the foundation of the Block chain technology and understand the processes in payment and funding - Identify the risks involved in building Block chain applications - Review of legal implications using smart contracts - Choose the present landscape of Blockchain implementations and Understand Crypto currency markets - Examine how to profit from trading crypto currencies #### **UNIT I** Introduction, Scenarios, Challenges Articulated, Blockchain, Blockchain Characteristics, Opportunities Using Blockchain, History of Blockchain. Evolution of Blockchain: Evolution of Computer Applications, Centralized Applications, Decentralized Applications, Stages in Blockchain Evolution, Consortia, Forks, Public Blockchain Environments, Type of Players in Blockchain Ecosystem, Players in Market. #### **UNIT II**
Blockchain Concepts: Introduction, Changing of Blocks, Hashing, Merkle-Tree, Consensus, Mining and Finalizing Blocks, Currency aka tokens, security on blockchain, data storage on blockchain, wallets, coding on blockchain: smart contracts, peer-to-peer network, types of blockchain nodes, risk associated with blockchain solutions, life cycle of blockchain transaction. #### **UNIT III** Architecting Blockchain solutions: Introduction, Obstacles for Use of Blockchain, Blockchain Relevance Evaluation Framework, Blockchain Solutions Reference Architecture, Types of Blockchain Applications, Cryptographic Tokens, Typical Solution Architecture for Enterprise Use Cases, Types of Blockchain Solutions, Architecture Considerations, Architecture with Blockchain Platforms, Approach for Designing Blockchain Applications. #### **UNIT IV** Ethereum Blockchain Implementation: Introduction, Tuna Fish Tracking Use Case, Ethereum Ecosystem, Ethereum Development, Ethereum Tool Stack, Ethereum Virtual Machine, Smart Contract Programming, Integrated Development Environment, Truffle Framework, Ganache, Unit Testing, Ethereum Accounts, MyEtherWallet, Ethereum Networks/Environments, Infura, Etherscan, Ethereum Clients, Decentralized Application, Metamask, Tuna Fish Use Case Implementation, OpenZeppelin Contracts #### DEPARTMENT OF INFORMATION TECHNOLOGY #### **UNIT V** Hyperledger Blockchain Implementation, Introduction, Use Case – Car Ownership Tracking, Hyperledger Fabric, Hyperledger Fabric Transaction Flow, FabCar Use Case Implementation, Invoking Chaincode Functions Using Client Application. Advanced Concepts in Blockchain: Introduction, InterPlanetary File System (IPFS), Zero-Knowledge Proofs, Oracles, Self-Sovereign Identity, Blockchain with IoT and AI/ML Quantum Computing and Blockchain, Initial Coin Offering, Blockchain Cloud Offerings, Blockchain and its Future Potential. #### **Text Books:** - 1) Ambadas, Arshad Sarfarz Ariff, Sham "Blockchain for Enterprise Application Developers", Wilev - 2) Andreas M. Antonpoulos, "Mastering Bitcoin: Programming the Open Blockchain", O'Reilly #### **Reference Books:** - 1) Blockchain: A Practical Guide to Developing Business, Law, and Technology Solutions, Joseph Bambara, Paul R. Allen, Mc Graw Hill. - 2) Blockchain: Blueprint for a New Economy, Melanie Swan, O'Reilly #### e-Resources: 1) https://github.com/blockchainedindia/resources #### DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – II Semester | | L | T | P | C | |-----------------------|-----------------------------|---|---|---|---| | 1 Teur II Semester | | 3 | 0 | 0 | 3 | | | SOFTWARE PROJECT MANAGEMENT | | | | | #### **Course Objectives:** At the end of the course, the student shall be able to: - To describe and determine the purpose and importance of project management from the perspectives of planning, tracking and completion of project - To compare and differentiate organization structures and project structures - To implement a project to manage project schedule, expenses and resources with the application of suitable project management tools #### **Course outcomes:** Upon the completion of the course students will be able to:- - Apply the process to be followed in the software development life-cycle models - Apply the concepts of project management & planning - Implement the project plans through managing people, communications and change - Conduct activities necessary to successfully complete and close the Software projects - Implement communication, modeling, and construction & deployment practices in software development #### UNIT I Conventional Software Management: The waterfall model, conventional software Management performance. Evolution of Software Economics: Software Economics, pragmatic software cost estimation. Improving Software Economics: Reducing Software product size, improving software processes, improving team effectiveness, improving automation, Achieving required quality, peer inspections. #### **UNIT II** The Old Way and The New: The principles of conventional software Engineering, principles of modern software management, transitioning to an iterative process. Life Cycle Phases: Engineering and production stages, inception, Elaboration, construction, transition phases. Artifacts of The Process: The artifact sets, Management artifacts, Engineering artifacts, programmatic artifacts. #### **UNIT III** Model Based Software Architectures: A Management perspective and technical perspective. Work Flows of the Process: Software process workflows, Iteration workflows. Checkpoints of the Process: Major mile stones, Minor Milestones, Periodic status assessments. #### DEPARTMENT OF INFORMATION TECHNOLOGY #### **UNIT IV** Iterative Process Planning: Work breakdown structures, planning guidelines, cost and schedule estimating, Iteration planning process, Pragmatic planning. Project Organizations and Responsibilities: Line-of-Business Organizations, Project Organizations, evolution of Organizations. #### **UNIT V** Process Automation: Automation Building blocks, The Project Environment. Project Control and Process Instrumentation: The seven core Metrics, Management indicators, quality indicators, life cycle expectations, pragmatic Software Metrics, Metrics automation. Project Estimation and Management: COCOMO model, Critical Path Analysis, PERT technique, Monte Carlo approach (Text book 2) #### **Text Books:** - 1) Software Project Management, Walker Royce, Pearson Education, 2005. - 2) Software Project Management, Bob Hughes, 4th edition, Mike Cotterell, TMH. - 1) Software Project Management, Joel Henry, Pearson Education - 2) Software Project Management in practice, Pankaj Jalote, Pearson Education, 2005 - 3) Effective Software Project Management, Robert K. Wysocki, Wiley, 2006 #### DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – II Semester | | L | T | P | C | |-----------------------|---------------------|---|---|---|---| | TV Tour II Somester | | 3 | 0 | 0 | 3 | | | NETWORK PROGRAMMING | | | | | #### **Course Objectives:** - To understand to Linux utilities - To understand file handling, signals - To understand IPC, network programming in Java - To understand processes to communicate with each other across a Computer Network #### **Course Outcomes:** The student is able to - Demonstrate functional layering of network software architectures - Write your own socket-based network application programs - Apply software tools for network troubleshooting #### **UNIT I** Linux Utilities-File handling utilities, Security by file permissions, Process utilities, Disk utilities, Networking utilities, Filters, Text processing utilities and Backup utilities. Bourne again shell(bash) – Introduction, pipes and redirection, here documents, running a shell script, the shell as a programming language, shell meta characters, file name substitution, shell variables, command substitution, shell commands, the environment, quoting, test command, control structures, arithmetic in shell, shell script examples. Review of C programming concepts-arrays, strings (library functions), pointers, function pointers, structures, unions, libraries in C. #### UNIT II Files-File Concept, File types File System Structure, Inodes, File Attributes, file I/O in C using system calls, kernel support for files, file status information-stat family, file and record locking-lockf and fcntl functions, file permissions- chmod fchmod,\ file ownership-chown, lchown, fchown, links-soft links and hard links – symlink, link, unlink. File and Directory management – Directory contents, Scanning Directories- Directory file APIs. Process- Process concept, Kernel support for process, process attributes, process control – process creation, replacing a process image, waiting for a process, process termination, zombie process, orphan process. #### **UNIT III** Signals- Introduction to signals, Signal generation and handling, Kernel support for signals, Signal function, unreliable signals, reliable signals, kill, raise, alarm, pause, abort, sleep functions. Interprocess Communication – Introduction to IPC mechanisms, Pipes- creation, IPC between related processes using unnamed pipes, FIFOs-creation, IPC between unrelated processes using FIFOs(Named pipes), differences between unnamed and named pipes, popen and pclose library functions, Introduction to message queues, semaphores and shared memory. Message Queues- Kernel support for messages, UNIX system V APIs for messages, client/server example. Semaphores-Kernel support for semaphores, UNIX system V APIs for semaphores. #### DEPARTMENT OF INFORMATION TECHNOLOGY #### **UNIT IV** Shared Memory- Kernel support for shared memory, UNIX system V APIs for shared memory, client/server example. Network IPC – Introduction to Unix Sockets, IPC over a network, Client-Server model ,Address formats(Unix domain and Internet domain), Socket system calls for Connection Oriented – Communication, Socket system calls for Connectionless-Communication, Example-Client/Server Programs- Single Server-Client connection, Multiple simultaneous clients, Socket options – setsockopt, getsockopt, fcntl. #### **UNIT V** Network Programming in Java-Network basics, TCP sockets, UDP sockets (datagram sockets), Server programs that can handle one connection at a time and multiple connections (using multithreaded server), Remote Method Invocation (Java RMI)-Basic RMI Process, Implementation details-Client-Server Application. #### **Text Books:** - 1) Unix System Programming using C++, T.Chan, PHI.(Units II,III,IV) - 2) Unix Concepts and Applications, 4th Edition, Sumitabha Das, TMH.(Unit I) - 3) An Introduction to Network Programming with Java, Jan Graba, Springer, rp 2010.(Unit V) - 4) Unix Network Programming ,W.R. Stevens, PHI.(Units II,III,IV) - 5) Java Network Programming, 3rd edition, E.R. Harold, SPD, O'Reilly. (Unit V) - 1) Linux System Programming, Robert Love, O'Reilly, SPD. - 2) Advanced
Programming in the UNIX environment, 2nd Edition, W.R.Stevens, Pearson Education. - 3) UNIX for programmers and users, 3rd Edition, Graham Glass, King Ables, Pearson Education. - 4) Beginning Linux Programming, 4th Edition, N.Matthew, R.Stones, Wrox, Wiley India Edition. - 5) Unix Network Programming The Sockets Networking API, Vol.-I,W.R.Stevens, Bill Fenner, A.M.Rudoff, Pearson Education. - 6) Unix Internals, U. Vahalia, Pearson Education. ## DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – II Semester | L | T | P | C | | |-----------------------|-------------|---|---|---|---| | TV Tear II gemester | | 0 | 0 | 0 | 7 | | | Project -II | | | | | ### DEPARTMENT OF INFORMATION TECHNOLOGY # **Open Electives to be offered by IT for Other Branches:** | Open Elective I: | syllabus Refer to | |-------------------------|-------------------| |-------------------------|-------------------| | Data Structures | IT2103 | |------------------------------|--------| | Java Programming | IT2201 | | Data Base Management Systems | IT2203 | | C++ Programming | IT2105 | | Operating Systems | IT2202 | | Internet of Things | PE4102 | # **Open Elective II:** | Problem Solving using Python | ES2101 | |------------------------------|--------| | Web Technologies | IT3202 | | Machine Learning | IT4102 | | Distributed Computing | PE4102 | | AI Tools & Techniques | IT3104 | | Data Science | PE4102 | # **Open Elective III:** | Big Data | PE4101 | |--------------------------------|--------| | Image Processing | | | Mobile Application Development | | | Cyber Security | | | Deep Learning | PE4201 | |-------------------------|--------| | Blockchain Technologies | PE4201 | #### DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – II Semester | | L | T | P | C | |-----------------------|-------------------|---|---|---|---| | TV Tear II semester | | 3 | 0 | 0 | 3 | | | IMAGE PROCESSING | · | | | | | | Open Elective III | | | | | #### **Course Objectives:** - To become familiar with digital image fundamentals - To get exposed to simple image enhancement techniques in Spatial and Frequency domain - To learn concepts of degradation function and restoration techniques - To study the image segmentation and representation techniques - To become familiar with image compression and recognition methods #### **Course Outcomes:** At the end of the course, the students will be able to: - Know and understand the basics and fundamentals of digital image processing, such as digitization, sampling, quantization, and 2D-transforms - Operate on images using the techniques of smoothing, sharpening and enhancement. - Use the restoration concepts and filtering techniques - Illustrate the basics of segmentation, features extraction, compression and recognition methods for color models #### UNIT I Digital Image Fundamentals: Steps in Digital Image Processing – Components – Elements of Visual Perception – Image Sensing and Acquisition – Image Sampling and Quantization – Relationships between pixels - Color image fundamentals - RGB, HSI models, Two-dimensional mathematical preliminaries, 2D transforms - DFT, DCT. #### **UNIT II** Image Enhancement: Spatial Domain: Gray level transformations – Histogram processing – Basics of Spatial Filtering– Smoothing and Sharpening Spatial Filtering, Frequency Domain: Introduction to Fourier Transform– Smoothing and Sharpening frequency domain filters – Ideal, Butterworth and Gaussian filters, Homomorphic filtering, Color image enhancement. #### **UNIT III** Image Restoration: Image Restoration - degradation model, Properties, Noise models - Mean Filters - Order Statistics - Adaptive filters - Band reject Filters - Band pass Filters - Notch Filters - Optimum Notch Filtering - Inverse Filtering - Wiener filtering. #### **UNIT IV** Image Segmentation: Edge detection, Edge linking via Hough transform – Thresholding - Region based segmentation – Region growing – Region splitting and merging – Morphological processing- erosion and dilation, Segmentation by morphological watersheds – basic concepts – Dam construction – Watershed segmentation algorithm. #### **UNIT V** #### DEPARTMENT OF INFORMATION TECHNOLOGY Image Compression and Recognition: Need for data compression, Huffman, Run Length Encoding, Shift codes, Arithmetic coding, JPEG standard, MPEG. Boundary representation, Boundary description, Fourier Descriptor, Regional Descriptors – Topological feature, Texture - Patterns and Pattern classes - Recognition based on matching. #### **Text Books:** - 1) Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing, Pearson, Third Edition, 2010. - 2) Anil K. Jain, Fundamentals of Digital Image Processing, Pearson, 2002. - 1) Kenneth R. Castleman, Digital Image Processing, Pearson, 2006. - 2) D.E. Dudgeon and RM. Mersereau, Multidimensional Digital Signal Processing, Prentice Hall Professional Technical Reference, 1990. - 3) William K. Pratt, Digital Image Processing, John Wiley, New York, 2002. #### DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year – II Semester | | L | T | P | C | |-----------------------|--------------------------------|---|---|---|---| | | | 3 | 0 | 0 | 3 | | N | IOBILE APPLICATION DEVELOPMENT | | | | | | | Open Elective III | | | | | #### **Course Objectives:** - To demonstrate the introduction and characteristics of mobile applications - Application models of mobile application frameworks. Managing application data and Userinterface design for mobile applications - Integrating networking, the OS and hardware into mobile-applications - Addressing enterprise requirements in mobile applications performance, scalability, modifiability, availability and security - Testing methodologies for mobile applications— Publishing, deployment, maintenance and management. To demonstrate their skills of using Android software development tools - To demonstrate their ability to deploy software to mobile devices #### **Course Outcomes:** Upon completion of the course students should be able to: - Install and configure Android application development tools - Design and develop user Interfaces for the Android platform - Save state information across important operating system events - Apply Java programming concepts to Android application development #### UNIT I Introduction to mobile devices: Introduction to Mobile Computing, Introduction to Android Development Environment, Mobile devices vs. desktop devices, ARM and Intel architectures, Screen resolution, Touch interfaces, Application deployment, App Store, Google Play, Windows Store. Development environments: XCode, Eclipse, VS2012, PhoneGAP, etc.; Native vs. web applications. Factors in Developing Mobile Applications: Mobile Software Engineering, Frameworks and Tools, Generic UI Development, Android User. #### **UNIT II** Android User Interface: Measurements – Device and pixel density independent measuring units User Interface (UI) Components – Editable and non editable Text Views, Buttons, Radio and Toggle Buttons, Checkboxes, Spinners, Dialog and pickers Fragments – Creating fragments, Lifecycle of fragments, Fragment states, Adding fragments to Activity, adding, removing and replacing fragments with fragment transactions, interfacing between fragments and Activities, Multi-screen Activities. #### **UNIT III** Back Ground Running Process, Networking And Telephony Services: Services: Introduction to services – local service, remote service and binding the service, the communication between service and activity, Intent Service. MultiThreading: Handlers, AsyncTask. Android network programming: Http Url Connection, Connecting to REST-based and SOAP based Web #### DEPARTMENT OF INFORMATION TECHNOLOGY services. Broad cast receivers: Local Broadcast Manager, Dynamic broadcast receiver, System Broadcast. Pending Intent, Notifications. #### **UNIT IV** Android: Introduction – Establishing the development environment – Android architecture – Activities and views – Interacting with UI – Persisting data using SQLite – Packaging and deployment – Interaction with server side applications – Using Google Maps, GPS and Wifi – Integration with social media applications. #### **UNIT V** Advanced Topics: Power Management: Wake locks and assertions, Low-level OS support, Writing power-smart applications. Augmented Reality via GPS and other sensors: GPS, Accelerometer, Camera. Mobile device security in depth: Mobile malware, Device protections, iOS "Jailbreaking", Android "rooting" and Windows' "defenestration"; Security and Hacking: Active Transactions, More on Security, Hacking Android. #### **Text Books:** - 1) Bill Phillips, Chris Stewart, Brian Hardy, and Kristin Marsicano, Android Programming: The Big Nerd - 2) Ranch Guide, Big Nerd Ranch LLC, 2nd edition, 2015. - 3) Valentino Lee, Heather Schneider, and Robbie Schell, Mobile Applications: Architecture, Design and Development, Prentice Hall, 2004. - 4) Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox), 2012 - 5) Android Application Development for Java Programmers, James C Sheusi, Cengage Learning, 2013 - 6) Dawn Griffiths, David Griffiths, "Head First: Android Development", OReilly2015,ISBN: 9781449362188 - 7) http://developer.android.com/develop/index.html - 8) Jeff McWherter and Scott Gowell, "Professional Mobile Application Development", Wrox, 2012 - 1) Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India (Wrox), 2013 - 2) Tomasz Nurkiewicz and Ben Christensen, Reactive Programming with RxJava, O'Reilly Media, 2016. - 3) Brian Fling, Mobile Design and Development, O'Reilly Media, Inc., 2009. - 4) Maximiliano Firtman, Programming the Mobile Web, O'Reilly Media, Inc., 2nd ed., 2013. - 5) Cristian Crumlish and Erin Malone, Designing Social Interfaces, 2nd ed., O'Reilly Media, Inc., 2014. - 6) Suzanne Ginsburg, Designing the iPhone User Experience: A User-Centered Approach to Sketching and Prototyping iPhone Apps, Addison-Wesley Professional, 2010. #### DEPARTMENT OF INFORMATION TECHNOLOGY | IV Year
– II Semester | | L | T | P | C | |-----------------------|-------------------|---|---|---|---| | | | 3 | 0 | 0 | 3 | | CYBER SECURITY | | | | | | | | Open Elective III | | | | | #### **Course Objectives:** In this course, the student will learn about - The essential building blocks and basic concepts around cyber security - Types of malware - Types of Threats & Risks #### **Course Outcomes:** At the end of the course, the students will be able to: - Illustrate the broad set of technical, social & political aspects of Cyber Security and security management methods to maintain security protection - Appreciate the vulnerabilities and threats posed by criminals, terrorist and nation states to national infrastructure - Illustrate the nature of secure software development and operating systems - Demonstrate the role security management plays in cyber security defense and legal and social issues at play in developing solutions. #### UNIT I Introduction: Introduction to Computer Security, Threats, Harm, Vulnerabilities, Controls, Authentication, Access Control, and Cryptography, Authentication, Access Control, Cryptography. Programs and Programming: Unintentional (Non-malicious) Programming Oversights, Malicious Code—Malware, Countermeasures. #### **UNIT II** Web Security: User Side, Browser Attacks, Web Attacks Targeting Users, Obtaining User or Website Data, Email Attacks. Operating Systems Security: Security in Operating Systems, Security in the Design of Operating Systems, Rootkit. #### UNIT III Network Security: Network Concepts, Threats to Network Communications, Wireless Network Security, Denial of Service, Distributed Denial-of-Service Strategic Defenses: Security Countermeasures, Cryptography in Network Security, Firewalls, Intrusion Detection and Prevention Systems, Network Management . Cloud Computing and Security: Cloud Computing Concepts, Moving to the Cloud, Cloud Security Tools and Techniques, Cloud Identity Management, Securing IaaS. #### DEPARTMENT OF INFORMATION TECHNOLOGY #### **UNIT IV** Privacy: Privacy Concepts, Privacy Principles and Policies, Authentication and Privacy, Data Mining, Privacy on the Web, Email Security, Privacy Impacts of Emerging Technologies, Where the Field Is Headed. Management and Incidents: Security Planning, Business Continuity Planning, Handling Incidents, Risk Analysis, Dealing with Disaster. #### UNIT V Legal Issues and Ethics: Protecting Programs and Data, Information and the Law, Rights of Employees and Employers, Redress for Software Failures, Computer Crime, Ethical Issues in Computer Security, Incident Analysis with Ethics Emerging Topics: The Internet of Things, Economics, Computerized Elections, Cyber Warfare. #### **Text Books:** - 1) Pfleeger, C.P., Security in Computing, Prentice Hall, 2010, 5th edition. - 2) Schneier, Bruce. Applied Cryptography, Second Edition, John Wiley & Sons, 1996 - 1) Rhodes-Ousley, Mark. Information Security: The Complete Reference, Second Edition, Information Security Management: Concepts and Practice, McGraw-Hill, 2013. - 2) Whitman, Michael E. and Herbert J. Mattord. Roadmap to Information Security for IT and Infosec Managers. Boston, MA: Course Technology, 2011.